Introduction to Three-phase Circuits Balanced 3-phase systems Unbalanced 3-phase systems

Introduction to 3-phase systems

Z_{L}
Single-phase two-wire system:

- Single source connected to a load using two-wire system

Single-phase three-wire system:

- Two sources connected to two loads using three-wire system
- Sources have EQUAL magnitude and are IN PHASE

Circuit or system in which AC sources operate at the same frequency but different phases are known as polyphase.

Balanced Two-phase three-wire system:

- Two sources connected to two loads using three-wire system
- Sources have EQUAL frequency but DIFFFERENT phases

Two Phase System:

- A generator consists of two coils placed perpendicular to each other
- The voltage generated by one lags the other by 90°.

> Balanced Three-phase four-wire system:

- Three sources connected to 3 loads using four-wire system
- Sources have EQUAL frequency but DIFFFERENT phases

Three Phase System:

- A generator consists of three coils placed 120° apart.
- The voltage generated are equal in magnitude but, out of phase by 120°.
- Three phase is the most economical polyphase system.

AC Generation

- Three things must be present in order to produce electrical current:
a) Magnetic field
b) Conductor
c) Relative motion
- \quad Conductor cuts lines of magnetic flux, a voltage is induced in the conductor
- Direction and Speed are important

GENERATING A SINGLE PHASE

Motion is parallel to the flux.
No voltage is induced.

GENERATING A SINGLE PHASE

Motion is 45° to flux.
Induced voltage is $\mathbf{0 . 7 0 7}$ of maximum.

Motion is perpendicular to flux. Induced voltage is maximum.

GENERATING A SINGLE PHASE

Motion is 45° to flux.
Induced voltage is $\mathbf{0 . 7 0 7}$ of maximum.

Motion is parallel to flux. No voltage is induced.

Notice current in the conductor has reversed.

Motion is 45° to flux. Induced voltage is 0.707 of maximum.

GENERATING A SINGLE PHASE

Motion is perpendicular to flux.
Induced voltage is maximum.

GENERATING A SINGLE PHASE

Motion is 45° to flux.
Induced voltage is 0.707 of maximum.

GENERATING A SINGLE PHASE

Motion is parallel to flux.
No voltage is induced.
Ready to produce another cycle.

GENERATION OF THREE-PHASE AC

> Three Voltages will be induced across the coils with 120 phase difference

Practical THREE PHASE GENERATOR

$>$ The generator consists of a rotating magnet (rotor) surrounded by a stationary winding (stator).
> Three separate windings or coils with terminals a-a', b-b', and c-c' are physically placed 120° apart around the stator.
$>$ As the rotor rotates, its magnetic field cuts the flux from the three coils and induces voltages in the coils.
> The induced voltage have equal magnitude but out of phase by 120°.

THREE-PHASE WAVEFORM

Phase 2 lags phase 1 by $\mathbf{1 2 0}^{\circ}$ Phase 3 lags phase 1 by 240°.

Phase 2 leads phase 3 by $\mathbf{1 2 0}^{\circ}$. Phase 1 leads phase 3 by 240°.

WHY WE STUDY 3 PHASE SYSTEM ?

- ALL electric power system in the world used 3-phase system to GENERATE, TRANSMIT and DISTRIBUTE
\checkmark One phase, two phase, or three phase ican be taken from three phase system rather than generated independently.
- Instantaneous power is constant (not pulsating).- thus smoother rotation of electrical machines
\checkmark High power motors prefer a steady torque
- More economical than single phase - less wire for the same power transfer
\checkmark The amount of wire required for a three phase system is less than required for an equivalent single phase system.

3-phase systems

Generation, Transmission and Distribution

Basic Structure of the Electric System

3-phase systems

Generation, Transmission and Distribution

Y and Δ connections

Balanced 3-phase systems can be considered as 3 equal single phase voltage sources connected either as Y or Delta (Δ) to 3 single three loads connected as either Y or Δ

$Y-Y \quad Y-\Delta \quad \Delta-Y \quad \Delta-\Delta$

Balance Three-Phase Voltages

Two possible configurations:

Three-phase voltage sources: (a) Y-connected ; (b) Δ-connected

Balanced 3-phase systems
LOAD CONNECTIONS

Δ connection

Balanced load:

$$
\mathbf{Z}_{1}=\mathbf{Z}_{2}=\mathbf{Z}_{3}=\mathbf{Z}_{\mathrm{Y}} \quad \mathbf{Z}_{\mathrm{a}}=\mathbf{Z}_{\mathrm{b}}=\mathbf{Z}_{\mathrm{c}}=\mathbf{Z}_{\Delta} \quad \mathbf{Z}_{\mathrm{Y}}=\frac{\mathbf{Z}_{\Delta}}{3}
$$

Unbalanced load: each phase load may not be the same.

Phase Sequence

The phase sequence is the time order in which the voltages pass through their respective maximum values.

Phase Sequence

Phase sequence : \mathbf{V}_{an} leads $\mathbf{V}_{\text {bn }}$ by 120° and $\mathbf{V}_{\text {bn }}$ leads $\mathbf{V}_{\text {cn }}$ by 120°
\rightarrow This is a known as abc sequence or positive sequence

Phase Sequence

What if different phase sequence?

$$
\begin{array}{ll}
\mathrm{v}_{\mathrm{an}}(\mathrm{t})=\sqrt{2} \mathrm{~V}_{\mathrm{p}} \cos (\omega \mathrm{t}) & \Rightarrow \mathrm{V}_{\mathrm{an}}=\mathrm{V}_{\mathrm{p}} \angle 0^{\circ} \\
\left.\mathrm{v}_{\mathrm{cn}} \mathrm{t}\right)=\sqrt{2} \mathrm{~V}_{\mathrm{p}} \cos \left(\omega \mathrm{t}-120^{\circ}\right) \Rightarrow \mathrm{V}_{\mathrm{cn}} \mathrm{~V}_{\mathrm{p}} \angle-120^{\circ} \\
\mathrm{v}_{\mathrm{bn}}(\mathrm{t})=\sqrt{2} \mathrm{~V}_{\mathrm{p}} \cos \left(\omega \mathrm{t}+120^{\circ}\right) \Rightarrow \mathrm{V}_{\mathrm{bn}}=\mathrm{V}_{\mathrm{p}} \angle 120^{\circ}
\end{array}
$$

RMS phasors !

Phase Sequence

What if different phase sequence?

Phase sequence : $\mathbf{V}_{\text {an }}$ leads $\mathbf{V}_{\text {cn }}$ by 120° and $\mathbf{V}_{\text {cn }}$ leads $\mathbf{V}_{\text {bn }}$ by 120°
\rightarrow This is a known as acb sequence or negative sequence

Example 1

Determine the phase sequence of the set of voltages.

$$
\begin{aligned}
& v_{a n}=200 \cos \left(\omega t+10^{\circ}\right) \\
& v_{b n}=200 \cos \left(\omega t-230^{\circ}\right) \\
& v_{c n}=200 \cos \left(\omega t-110^{\circ}\right)
\end{aligned}
$$

Solution:

The voltages can be expressed in phasor form as

$$
\begin{array}{|l|}
\mathrm{V}_{a n}=200 \angle 10^{\circ} \mathrm{V} \\
\mathrm{~V}_{b n}=200 \angle-230^{\circ} \mathrm{V} \\
\mathrm{~V}_{c n}=200 \angle-110^{\circ} \mathrm{V}
\end{array}
$$

We notice that $\mathbf{V}_{\text {an }}$ leads $\mathbf{V}_{\text {cn }}$ by 120° and $\mathbf{V}_{\mathbf{c n}}$ in turn leads V_{bn} by 120°.

Hence, we have an acb sequence.

Balanced 3-phase Y-Y

Balanced 3-phase systems Balanced Y-Y Connection

$$
\begin{aligned}
\mathrm{V}_{\mathrm{ab}} & =\mathrm{V}_{\mathrm{an}}+\mathrm{V}_{\mathrm{nb}} \\
& =\mathrm{V}_{\mathrm{p}} \angle 0^{\circ}+\mathrm{V}_{\mathrm{p}} \angle 60^{\circ} \\
& =\sqrt{3} \mathrm{~V}_{\mathrm{p}} \angle 30^{\circ}
\end{aligned}
$$

Balanced 3-phase systems Balanced Y-Y Connection

$$
\begin{aligned}
\mathrm{V}_{\mathrm{ab}} & =\mathrm{V}_{\mathrm{an}}+\mathrm{V}_{\mathrm{nb}} \\
& =\mathrm{V}_{\mathrm{p}} \angle 0^{\circ}+\mathrm{V}_{\mathrm{p}} \angle 60^{\circ} \\
& =\sqrt{3} \mathrm{~V}_{\mathrm{p}} \angle 30^{\circ}
\end{aligned}
$$

Balanced 3-phase systems Balanced Y-Y Connection

$$
\begin{aligned}
\mathrm{V}_{\mathrm{ab}} & =\mathrm{V}_{\mathrm{an}}+\mathrm{V}_{\mathrm{nb}} \\
& =\mathrm{V}_{\mathrm{p}} \angle 0^{\circ}+\mathrm{V}_{\mathrm{p}} \angle 60^{\circ} \\
& =\sqrt{3} \mathrm{~V}_{\mathrm{p}} \angle 30^{\circ}
\end{aligned}
$$

Balanced 3-phase systems Balanced Y-Y Connection

$$
\begin{aligned}
\mathrm{V}_{\mathrm{ab}} & =\mathrm{V}_{\mathrm{an}}+\mathrm{V}_{\mathrm{nb}} \\
& =\mathrm{V}_{\mathrm{p}} \angle 0^{\circ}+\mathrm{V}_{\mathrm{p}} \angle 60^{\circ} \\
& =\sqrt{3} \mathrm{~V}_{\mathrm{p}} \angle 30^{\circ} \\
\mathrm{V}_{\mathrm{bc}} & =\mathrm{V}_{\mathrm{bn}}+\mathrm{V}_{\mathrm{nc}} \\
& =\sqrt{3} \mathrm{~V}_{\mathrm{p}} \angle-90^{\circ}
\end{aligned}
$$

Balanced 3-phase systems Balanced Y-Y Connection

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{an}}+\mathrm{V}_{\mathrm{nb}} \\
&=\mathrm{V}_{\mathrm{p}} \angle 0^{\circ}+\mathrm{V}_{\mathrm{p}} \angle 60^{\circ} \\
&=\sqrt{3} \mathrm{~V}_{\mathrm{p}} \angle 30^{\circ} \\
& \mathrm{V}_{\mathrm{bc}}=\mathrm{V}_{\mathrm{bn}}+\mathrm{V}_{\mathrm{nc}} \\
&=\sqrt{3} \mathrm{~V}_{\mathrm{p}} \angle-90^{\circ} \\
& \\
& \mathrm{V}_{\mathrm{ca}}=\mathrm{V}_{\mathrm{cn}}+\mathrm{V}_{\mathrm{na}} \\
&=\sqrt{3} \mathrm{~V}_{\mathrm{p}} \angle 150^{\circ}
\end{aligned}
$$

Balanced 3-phase systems Balanced Y-Y Connection

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{an}}+\mathrm{V}_{\mathrm{nb}} \\
&=\mathrm{V}_{\mathrm{p}} \angle 0^{\circ}+\mathrm{V}_{\mathrm{p}} \angle 60^{\circ} \\
&=\sqrt{3} \mathrm{~V}_{\mathrm{p}} \angle 30^{\circ} \\
& \\
& \mathrm{V}_{\mathrm{bc}}=\mathrm{V}_{\mathrm{bn}}+\mathrm{V}_{\mathrm{nc}} \\
&=\sqrt{3} \mathrm{~V}_{\mathrm{p}} \angle-90^{\circ} \\
& \\
& \mathrm{V}_{\mathrm{ca}}=\mathrm{V}_{\mathrm{cn}}+\mathrm{V}_{\mathrm{na}} \\
&=\sqrt{3} \mathrm{~V}_{\mathrm{p}} \angle 150^{\circ}
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{L}}=\sqrt{3} \mathrm{~V}_{\mathrm{p}}
$$

where $\quad \mathrm{V}_{\mathrm{L}}=\left|\mathrm{V}_{\mathrm{ab}}\right|=\left|\mathrm{V}_{\mathrm{bc}}\right|=\left|\mathrm{V}_{\mathrm{ca}}\right| \quad$ and $\quad \mathrm{V}_{\mathrm{p}}=\left|\mathrm{V}_{\mathrm{an}}\right|=\left|\mathrm{V}_{\mathrm{bn}}\right|=\left|\mathrm{V}_{\mathrm{cn}}\right|$

Balanced 3-phase systems Balanced Y-Y Connection

For a balanced $\mathrm{Y}-\mathrm{Y}$ connection, analysis can be performed using an equivalent per-phase circuit: e.g. for phase A:

Balanced 3-phase systems Balanced Y-Y Connection

For a balanced $\mathbf{Y}-\mathrm{Y}$ connection, analysis can be performed using an equivalent per-phase circuit: e.g. for phase A:

$$
I_{a}=\frac{V_{a n}}{Z_{Y}}
$$

Based on the sequence, the other line currents can be obtained from:

$$
\mathrm{I}_{\mathrm{b}}=\mathrm{I}_{\mathrm{a}} \angle-120^{\circ} \quad \mathrm{I}_{\mathrm{c}}=\mathrm{I}_{\mathrm{a}} \angle 120^{\circ}
$$

Balanced 3-phase systems Balanced Y - Δ Connection

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{an}}=\mathrm{V}_{\mathrm{p}} \angle 0^{\circ} \\
& \mathrm{V}_{\mathrm{bn}}=\mathrm{V}_{\mathrm{p}} \angle-120^{\circ} \\
& \mathrm{V}_{\mathrm{cn}}=\mathrm{V}_{\mathrm{p}} \angle 120^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ab}}=\sqrt{3} \mathrm{~V}_{\mathrm{p}} \angle 30^{\circ} \\
& =\mathrm{V}_{\mathrm{AB}} \\
& V_{b c}=\sqrt{3} V_{p} \angle-90^{\circ} \\
& =V_{B C} \\
& \mathrm{~V}_{\mathrm{ca}}=\sqrt{3} \mathrm{~V}_{\mathrm{p}} \angle 150^{\circ} \\
& I_{C A}=\frac{V_{C A}}{Z_{\Delta}} \\
& \mathrm{I}_{\mathrm{AB}}=\frac{\mathrm{V}_{\mathrm{AB}}}{\mathrm{Z}_{\Delta}} \\
& I_{B C}=\frac{V_{B C}}{Z_{\Delta}} \quad \text { Phase } \\
& \text { currents } \\
& I_{a}=I_{A B}-I_{C A} \\
& =I_{A B}\left(1-1 \angle 120^{\circ}\right) \\
& =I_{A B} \sqrt{3} \angle-30^{\circ} \\
& I_{b}=I_{B C}-I_{A B} \\
& =I_{B C}\left(1-1 \angle 120^{\circ}\right) \\
& =I_{\mathrm{BC}} \sqrt{3} \angle-30^{\circ} \\
& I_{C}=I_{C A} \sqrt{3} \angle-30^{\circ}
\end{aligned}
$$

Balanced 3-phase systems Balanced Y - Δ Connection

Phase current LEADS line current by 30°

Balanced 3-phase $\Delta-\Delta$
 same as phase voltage in

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{p}} \angle 0^{\circ} \\
& \mathrm{V}_{\mathrm{bc}}=\mathrm{V}_{\mathrm{p}} \angle-120^{\circ} \\
& \mathrm{V}_{\mathrm{cn}}=\mathrm{V}_{\mathrm{p}} \angle 120^{\circ}
\end{aligned}
$$

$\mathrm{V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{AB}}$
$\mathrm{I}_{\mathrm{AB}}=\frac{\mathrm{V}_{\mathrm{AB}}}{\mathrm{Z}_{\Delta}}$
$V_{b c}=V_{B C}$
$\mathrm{I}_{\mathrm{BC}}=\frac{\mathrm{V}_{\mathrm{BC}}}{\mathrm{Z}_{\Delta}}$
Using KCL

Phase
currents
Using KCL

Phase
currents

$$
\left.\begin{array}{rl}
I_{a} & =I_{A B}-I_{C A} \\
& =I_{A B}\left(1-1 \angle 120^{\circ}\right) \\
& =I_{A B} \sqrt{3} \angle-30^{\circ} \\
I_{b} & =I_{B C}-I_{A B} \\
& =I_{B C}\left(1-1 \angle 120^{\circ}\right) \\
& =I_{B C} \sqrt{3} \angle-30^{\circ} \\
I_{C} & =I_{C A} \sqrt{3} \angle-30^{\circ}
\end{array}\right\}
$$

line currents

Balanced 3-phase systems Balanced $\Delta-\Delta$ Connection

Alternatively, by transforming the Δ connections to the equivalent Y connections per phase equivalent circuit analysis can be performed.

Balanced 3-phase systems Balanced $\Delta-Y$ Connection

How to find I_{a} ?
Loop1 $-V_{a b}+Z_{Y} I_{a}-Z_{Y} I_{b}=0 \quad \Rightarrow I_{a}-I_{b}=\frac{V_{a b}}{Z_{Y}}$

Since circuit is balanced, $I_{b}=I_{a} \angle-120^{\circ} \quad \Rightarrow I_{a}-I_{b}=I_{a}\left(1-1 \angle\left(-120^{\circ}\right)\right)$

Therefore $\quad I_{a}=\frac{V_{p} / \sqrt{3}}{Z_{Y}} \angle-30^{\circ}$

Balanced 3-phase systems Balanced $\Delta-Y$ Connection

How to find I_{a} ? (Alternative)

Transform the delta source connection to an equivalent Y and then perform the per phase circuit analysis
$>$ A balanced Y-Y system, showing the source, line and load impedances.

Source Impedance

